133 research outputs found

    Scheduling Monotone Moldable Jobs in Linear Time

    Full text link
    A moldable job is a job that can be executed on an arbitrary number of processors, and whose processing time depends on the number of processors allotted to it. A moldable job is monotone if its work doesn't decrease for an increasing number of allotted processors. We consider the problem of scheduling monotone moldable jobs to minimize the makespan. We argue that for certain compact input encodings a polynomial algorithm has a running time polynomial in n and log(m), where n is the number of jobs and m is the number of machines. We describe how monotony of jobs can be used to counteract the increased problem complexity that arises from compact encodings, and give tight bounds on the approximability of the problem with compact encoding: it is NP-hard to solve optimally, but admits a PTAS. The main focus of this work are efficient approximation algorithms. We describe different techniques to exploit the monotony of the jobs for better running times, and present a (3/2+{\epsilon})-approximate algorithm whose running time is polynomial in log(m) and 1/{\epsilon}, and only linear in the number n of jobs

    Bounding the Running Time of Algorithms for Scheduling and Packing Problems

    Get PDF
    We investigate the implications of the exponential time hypothesis on algorithms for scheduling and packing problems. Our main focus is to show tight lower bounds on the running time of these algorithms. For exact algorithms we investigate the dependence of the running time on the number n of items (for packing) or jobs (for scheduling). We show that many of these problems, including SUBSET SUM, KNAPSACK, BIN PACKING, P2||Cmax, and P2||∑wjCj, have a lower bound of 2o(n)Ă—âˆ„I∄O(n). We also develop an algorithmic framework that is able to solve a large number of scheduling and packing problems in time 2O(n)Ă—âˆ„I∄O(n). Finally, we show that there is no PTAS for MULTIPLE KNAPSACK and 2D-KNAPSACK with running time 2o(1Δ)Ă—âˆ„I∄O(n) and no(1Δ)Ă—âˆ„I∄O(n)

    Starting-up an IT-enabled Disruptive Innovation: A Stage Model

    Get PDF
    Disruptive innovations better business performance and society. Scholars have claimed that IT disruptive innovations have revolutionised how firms conduct their business and how people shape their daily chores. We discover how an emerging start-up company (goCatch) achieves a revolutionary and leading edge application system for the taxi industry from inception. This paper explains how goCatch manages its technology and unique business, whilst developing a mobile application and disrupting a virtually monopolistic incumbent. We present a stage model of IT-enabled application development start-up. The contributions of the model are two-fold. First, for theory in understanding how start-ups can deliver a disruptive innovation. Second, for entrepreneurial practice to gain a processual understanding of how these innovations are developed

    Delivering Disruption in an Emergent Access Economy: A Case Study of an E-hailing Platform

    Get PDF
    The growing adoption of platforms such as Uber and Airbnb has contributed to the emergence of an access economy, which has disrupted a number of incumbent industries in the process. In this study, we examine goCatch, one of Australia’s largest e-hailing and ride-sharing multi-sided platforms. From our investigations, we find that the technology affordances of multi-sided digital platforms can help to deliver new commercial services and offerings to consumers of the platform, which enables new forms of consumption and, subsequently, disrupts the incumbent industry. Our findings provide the empirical premise for a model that illustrates the role of technology in enabling consumer recognition, consumer engagement, and consumer transposition in the e-hailing context. For theory, we build on extant literature to identify the forms of motivational affordances leveraged in disruptive platforms and technologies. For practice, we conceptualize the function of technology-enabled gamification as an emergent strategy that one can use to induce consumers to change their behaviors, develop their technical skills and drive innovation that plays a central role in enabling digital disruption. This study also clarifies the relationship between technology affordances and value creation against the backdrop of the emergent access economy

    Collaborative Consumption On Mobile Applications: A Study Of Multi-sided Digital Platform GoCatch

    Get PDF
    This paper examines the role of IT in developing collaborative consumption. We present a study of the multi-sided platform goCatch, which is widely recognized as a mobile application and digital disruptor in the Australian transport industry. From our investigation, we find that goCatch uses IT to create situational-based and object-based opportunities to enable collaborative consumption and in turn digital disruption to the incumbent industry. We also highlight the factors to consider in developing a mobile application to connect with customers, and serve as a viable competitive option for responding to competition. Such research is necessary in order to better understand how service providers extract business value from digital technologies to formulate new breakthrough strategies, design compelling new products and services, and transform management processes. Ongoing work will reveal how m-commerce service providers can extract business value from a collaborative consumption model

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Get PDF
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of ÎŽCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Full text link
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model.Comment: Contribution to Snowmass 202
    • 

    corecore